Fonction inverse

 

Définition

 

Pour tout $x \in \mathbb{R}^*$, la fonction inverse est la fonction définie par $f(x) = \dfrac{1}{x}$. 

On remarquera que l'ensemble de définition de la fonction inverse est $\mathbb{R}^*$ ou encore $\left]-\infty;0\right [\cup \left]0;+\infty\right[$ car on ne peut pas diviser par 0.

 

La représentation graphique de la fonction inverse est une hyperbole. 

Chaque point de la courbe est le symétrique d'un autre par la symétrie centrale de centre $O(0;0)$ : la fonction inverse est une fonction impaire.

 

eecd887e4d73c541ba8ab5e5629704591cb9bd1b.png

 

Variations

 

La fonction inverse est décroissante pour $x$ strictement négatif et décroissante pour $x$ strictement positif.

Son tableau de variation est le suivant :


variations-fonction-inverse

La double barre utilisée signifie que $0$ est une valeur interdite, qui ne peut être prise. 

 

Résolution graphique d'inéquations

 

On souhaite par exemple résoudre l'inéquation $f(x) \geq -2$. 

On trace pour se faire la droite d'équation $y = -2$ et les solutions sont les antécédents des points de la courbe qui sont au dessus de cette droite. 

Graphiquement, les solutions sont donc $S = ]-\infty; -\dfrac{1}{2}]\ \cup \ ]0; +\infty[$ : il s'agit de la réunion de deux intervalles. 

 

7c62b1c783b631a4730fb1e62b78198b44eadafd.png

 

Loading…
Loading the web debug toolbar…
Attempt #